The Experiences of Women in Undergraduate Engineering

The following is a guest post by research assistant and team member, Natalie Mazur. This June, Natalie is presenting The Experiences of Women in Undergraduate Engineering at the 9th Canadian Engineering Education Association’s Annual Conference., Vancouver, Canada. The paper can be downloaded here . 

A long-standing issue in the field of engineering has been the representation of women. Of the students that pursue undergraduate studies, half are women. However, to this day, women make up only 21% of engineering undergraduate students in Canada. This number has not significantly changed in almost 20 years. Additionally, women make up only 17% of newly licensed engineers nationally. As we look higher and higher up the corporate ladder, fewer and fewer women are visible.

Lic

Research News for December 2017

Its been a busy few months. We gear up for the York University move in January. Our recent news includes:

Our team has won a number of recent research awards. Lauren Folk (now a graduate student on our team) won the Adjeleian Allen Rubeli Award Best undergraduate thesis 2017 at Carleton this fall. Her work is a collaboration with ARUP Fire that studied care home evacuation. We received three undergraduate research scholarships to study: Poverty in Canada, Timber in fire and GFRPs.

Ending the Winter with four NSERC USRA Awards, Two Graduate Scholarships, Best Professor award, EWB lecture…

Our research team received four NSERC USRA scholarships this summer (up from two last summer). The students (Natalie, Ben, Chloe and Seth) with these scholarships will study a variety of projects from Modelling pedestrian flow, timber design, to studying travelling fires with our international and national collaborators. These national awards at Carleton are given to undergraduate students who are excelling academically and have an interest to pursue further graduate studies.

Our graduate students Hailey Q won an Ontario Graduate Student Award, and so too did Matthew Smith as he recently won the SFPE National Capital Region Chapter Scholarship for Fire Safety Engineering for his thesis and these results are currently being distributed through the Canadian Institute of Steel Construction. In addition Arlin won Provost Scholar. In total the research team received about 36k in scholarships this past month.

The Strength of Lego

Lego_1
Capped and Uncapped (2×1 brick) Lego specimens before compression tests

Had an absolute grand time crushing Legos with Hailey Todd and the virtual ventures summer camp at Carleton University this week. Thought Id pass on some of the results we observed. Unlike the previous study conducted for the BBC where only one Lego block type was tested, we really wanted to understand what happens with Lego under a realistic building configurations and loading scenarios. So we took typical Lego blocks of 1×1, 1×2, 1×3 and 1×4 brick sizes and tested them in a loading actuator with compressive displacement control (mm per minute).

What we observed was that as the size increased so too did the ability to carry load (see graph below). Though it was not proportional to the added stud-brick for each block. We did not cap the Legos because we wanted to see the full effect. Basically the failure mechanism is as follows, the test begins with load being applied and the Lego brick ‘stud’ is pushed into the block giving a flat loading surface along the top of the block, there is a small elastic phase and then we begin to crush the Lego block (its peak load). Later we did cap the Lego and saw some interesting differences in peak load and failure pattern (see below).

lego results
Elementary school students as part of the virtual ventures summer camp at Carleton crushed Lego to introduce them to how building materials behave under load. An unexpected non-proportional trend in load increase with brick area increase was observed.

We opted to use Lego as a teaching example as its a relatable building material to youths. I think its a gate way to show them just how strong materials are when you can relate them to the day to day lives, obviously we get them hooked there, and progress to crushing concrete and breaking steel much after.

Lego_2
After testing the 2×1 brick Lego. The uncapped Lego failed at 4.2 KN; whereas the capped lego failed at 3.7 KN. Both blocks terminated with the same deformation level in mm. Not the different failure mechanisms are because the load is applied differently throughout the lego.